资源类型

期刊论文 12

年份

2022 1

2021 2

2018 1

2016 1

2015 2

2014 1

2013 1

2012 1

2011 1

2008 1

展开 ︾

关键词

外骨骼;物理人机交互;力矩传感器;人体步态;卡尔曼平滑器 1

展开 ︾

检索范围:

排序: 展示方式:

Parasitic rotation evaluation and avoidance of 3-UPU parallel mechanism

Haibo QU, Yuefa FANG, Sheng GUO

《机械工程前沿(英文)》 2012年 第7卷 第2期   页码 210-218 doi: 10.1007/s11465-012-0317-4

摘要:

Based on the prototype of 3-UPU (universal-prismatic-universal joint) parallel mechanism proposed by Tsai [ ], the parasitic rotation evaluation is performed and calculated the bound of instability of SNU Seoul National University 3-UPU parallel mechanism. Through analysis of the terminal constraint system of the 3-UPU parallel mechanism, the equation about the parasitic rotation and limited clearance is presented. Then the norm of possible parasitic rotation is employed to evaluate the mechanism stability with limited clearance. The higher this number the worst is the pose, the lower it is the best it is. And the contour atlas of parasitic rotation is obtained, which can be used for further analysis and design. With the practice experiment result of SUN 3-UPU parallel mechanism, we find it’s bound of instability, which indicates there will appear the parasitic rotation when the number exceeds the bound. Finally, the method for avoidance of possible parasitic motions is presented by adding redundantly actuated limbs.

关键词: parallel mechanism     3-UPU (universal-prismatic-universal joint)     parasitic motions     limited clearance     redundantly actuated limbs    

Optimal design of a linkage–cam mechanism-based redundantly actuated parallel manipulator

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 451-467 doi: 10.1007/s11465-021-0634-6

摘要: A redundantly actuated parallel manipulator (RAPM) with mixed translational and rotational degrees of freedom (DOFs) is challenged for its dimensionally homogeneous Jacobian modeling and optimal design of architecture. In this paper, a means to achieve redundant actuation by adding kinematic constraints is introduced, which reduces the DOFs of the end-effector (EE). A generic dimensionally homogeneous Jacobian is developed for this type of RAPMs, which maps the generalized velocities of three points on the EE to the joint velocities. A new optimization algorithm derived from this dimensionally homogeneous Jacobian is proposed for the optimal design of this type of RAPMs. As an example, this paper presents a spatial RAPM involving linkages and cam mechanisms. This RAPM has 4 DOFs and 6 translational actuations. The linkage lengths and the position of the universal joints of the RAPM are optimized based on the dimensionally homogeneous Jacobian.

关键词: redundant actuation     parallel manipulator     linkage–cam mechanism     Jacobian     optimal design    

A redundantly actuated PRPRP radial mechanism in the segment erector of a shield machine for synchronization

Wanghui BU, Zhenyu LIU, Jianrong TAN, Jin CHENG

《机械工程前沿(英文)》 2011年 第6卷 第4期   页码 463-467 doi: 10.1007/s11465-011-0225-z

摘要:

The shield machine is a heavy construction machine for tunnel excavation, and the segment erector is an important subsystem of the shield machine. It is difficult to achieve precise control in the 6-DOF (degree of freedom) erector in the 2-DOF 5-bar radial mechanism. Hence, this paper proposes a redundantly actuated PRPRP radial mechanism for the segment erector. When the redundant actuator is unlocked, the radial mechanism is able to adjust its posture, which has two degrees of freedom. On the other hand, when the redundant actuator is locked or produces enough pre-tightening tensile force, the PRPRP mechanism can ensure the synchronization of the two driving hydraulic cylinders along the radial direction based on the mechanical structure, which has one degree of freedom. The redundant actuator also facilitates the equal application of two flexural torques at the hydraulic cylinders; thus, preventing the overload of a single cylinder.

关键词: redundant actuation     parallel mechanisms     five-bar mechanisms     segment erectors     shield machines    

Development of a redundant anthropomorphic hydraulically actuated manipulator with a roll–pitch–yaw spherical

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 698-710 doi: 10.1007/s11465-021-0646-2

摘要: The demand for redundant hydraulic manipulators that can implement complex heavy-duty tasks in unstructured areas is increasing; however, current manipulator layouts that remarkably differ from human arms make intuitive kinematic operation challenging to achieve. This study proposes a seven-degree-of-freedom (7-DOF) redundant anthropomorphic hydraulically actuated manipulator with a novel roll–pitch–yaw spherical wrist. A hybrid series–parallel mechanism is presented to achieve the spherical wrist design, which consists of two parallel linear hydraulic cylinders to drive the yaw/pitch 2-DOF wrist plate connected serially to the roll structure. Designed as a 1R PRRR-1S PU mechanism (“R”, “P”, “S”, and “U” denote revolute, prismatic, spherical, and universal joints, respectively; the underlined letter indicates the active joint), the 2-DOF parallel structure is partially decoupled to obtain simple forward/inverse kinematic solutions in which a closed-loop subchain “R PRR” is included. The 7-DOF manipulator is then designed, and its third joint axis goes through the spherical center to obtain closed-form inverse kinematic computation. The analytical inverse kinematic solution is drawn by constructing self-motion manifolds. Finally, a physical prototype is developed, and the kinematic analysis is validated via numerical simulation and test results.

关键词: hydraulic manipulator     inverse kinematic     redundant design     spherical wrist    

Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning

Ruizhou WANG, Xianmin ZHANG

《机械工程前沿(英文)》 2015年 第10卷 第1期   页码 20-36 doi: 10.1007/s11465-015-0328-z

摘要:

Packaged piezoelectric ceramic actuators (PPCAs) and compliant mechanisms are attractive for nanopositioning and nanomanipulation due to their ultra-high precision. The way to create and keep a proper and steady connection between both ends of the PPCA and the compliant mechanism is an essential step to achieve such a high accuracy. The connection status affects the initial position of the terminal moving plate, the positioning accuracy and the dynamic performance of the nanopositioning platform, especially during a long-time or high-frequency positioning procedure. This paper presents a novel external preload mechanism and tests it in a 1-degree of freedom (1-DOF) compliant nanopositioning platform. The 1-DOF platform utilizes a parallelogram guiding mechanism and a parallelogram load mechanism to provide a more accurate actual input displacement and output displacement. The simulation results verify the proposed stiffness model and dynamic model of the platform. The values of the preload displacement, actual input displacement and output displacement can be measured by three capacitive sensors during the whole positioning procedure. The test results show the preload characteristics vary with different types or control modes of the PPCA. Some fitting formulas are derived to describe the preload displacement, actual input displacement and output displacement using the nominal elongation signal of the PPCA. With the identification of the preload characteristics, the actual and comprehensive output characteristics of the PPCA can be obtained by the strain gauge sensor (SGS) embedded in the PPCA.

关键词: nanopositioning     preload characteristic     packaged piezoelectric ceramic actuator     compliant mechanism    

Piezoelectric film-actuated motion platform with high resolution

HUA Shunming, ZHANG Hongzhuang, CHENG Guangming, FAN Zunqiang, LIU Jianfang

《机械工程前沿(英文)》 2008年 第3卷 第3期   页码 265-269 doi: 10.1007/s11465-008-0041-2

摘要: A piezoelectric film-actuated motion platform with high resolution, which can run in two directions within a horizontal plane, is presented. On the basis of the analysis of the working principle of a stick-slip mechanism, a mathematical model describing its dynamic behavior is set up and simulated. Experiments of the motion performance and carrying ability on the prototype are conducted. Results show that this type of platform has advantages including a simple structure, small volume, light weight, stable step length, and large traveling range. When the driving voltage is less than 30 V, step error is less than 0.5 ?m. The carrying ability of the platform is terrific and about 7–8 times its weight.

关键词: mathematical     stick-slip mechanism     piezoelectric film-actuated     analysis     terrific    

Analysis of suitable geometrical parameters for designing a tendon-driven under-actuated mechanical finger

Francesco PENTA,Cesare ROSSI,Sergio SAVINO

《机械工程前沿(英文)》 2016年 第11卷 第2期   页码 184-194 doi: 10.1007/s11465-016-0385-y

摘要:

This study aims to optimize the geometrical parameters of an under-actuated mechanical finger by conducting a theoretical analysis of these parameters. The finger is actuated by a flexion tendon and an extension tendon. The considered parameters are the tendon guide positions with respect to the hinges. By applying such an optimization, the correct kinematical and dynamical behavior of the closing cycle of the finger can be obtained. The results of this study are useful for avoiding the snap-through and the single joint hyperflexion, which are the two breakdowns most frequently observed during experimentation on prototypes. Diagrams are established to identify the optimum values for the tendon guides position of a finger with specified dimensions. The findings of this study can serve as guide for future finger design.

关键词: tendon-driven fingers     mechanical finger design     under-actuated mechanical systems    

A novel shape memory alloy actuated soft gripper imitated hand behavior

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0700-8

摘要: The limited length shrinkage of shape memory alloy (SMA) wire seriously limits the motion range of SMA-based gripper. In this paper, a new soft finger without silicone gel was designed based on pre bent SMA wire, and the finger was back to its original shape by heating SMA wire, rather than relying only on heat exchange with the environment. Through imitating palm movement, a structure with adjustable spacing between fingers was made using SMA spring and rigid spring. The hook structure design at the fingertip can form self-locking to further improve the load capacity of gripper. Through the long thin rod model, the relationship of the initial pre bent angle on the bending angle and output force of the finger was analyzed. The stress-strain model of SMA spring was established for the selection of rigid spring. Three grasping modes were proposed to adapt to the weight of the objects. Through the test of the gripper, it was proved that the gripper had large bending amplitude, bending force, and response rate. The design provides a new idea for the lightweight design and convenient design of soft gripper based on SMA.

关键词: shape memory alloy (SMA)     pre bent     wire     gripper     grasping mode     lightweight    

Structural design of morphing trailing edge actuated by SMA

Qi WANG, Zhiwei XU, Qian ZHU

《机械工程前沿(英文)》 2013年 第8卷 第3期   页码 268-275 doi: 10.1007/s11465-013-0261-y

摘要:

In this paper, the morphing trailing edge is designed to achieve the up and down deflection under the aerodynamic load. After a detailed and accurate computational analysis to determine the SMA specifications and layout programs, a solid model is created in CATIA and the structures of the morphing wing trailing edge are produced by CNC machining. A set of DSP measurement and control system is designed to accomplish the controlling experiment of the morphing wing trailing edge. At last, via the force analysis, the trailing edge is fabricated with four sections of aluminum alloy, and the arrangement scheme of SMA wires is determined. Experiment of precise control integral has been performed to survey the control effect. The experiment consists of deflection angle tests of the third joint and the integral structure. Primarily, the ultimate deflection angle is tested in these two experiments. Therefore, the controlling experiment of different angles could be performed within this range. The results show that the deflection error is less than 4% and response time is less than 6.7 s, the precise controlling of the morphing trailing edge is preliminary realized.

关键词: morphing wing trailing edge     shape memory alloy     digital signal processor     PID algorithm    

Push recovery for the standing under-actuated bipedal robot using the hip strategy

Chao LI,Rong XIONG,Qiu-guo ZHU,Jun WU,Ya-liang WANG,Yi-ming HUANG

《信息与电子工程前沿(英文)》 2015年 第16卷 第7期   页码 579-593 doi: 10.1631/FITEE.14a0230

摘要: This paper presents a control algorithm for push recovery, which particularly focuses on the hip strategy when an external disturbance is applied on the body of a standing under-actuated biped. By analyzing a simplified dynamic model of a bipedal robot in the stance phase, it is found that horizontal stability can be maintained with a suitably controlled torque applied at the hip. However, errors in the angle or angular velocity of body posture may appear, due to the dynamic coupling of the translational and rotational motions. To solve this problem, different hip strategies are discussed for two cases when (1) external disturbance is applied on the center of mass (CoM) and (2) external torque is acting around the CoM, and a universal hip strategy is derived for most disturbances. Moreover, three torque primitives for the hip, depending on the type of disturbance, are designed to achieve translational and rotational balance recovery simultaneously. Compared with closed-loop control, the advantage of the open-loop methods of torque primitives lies in rapid response and reasonable performance. Finally, simulation studies of the push recovery of a bipedal robot are presented to demonstrate the effectiveness of the proposed methods.

关键词: Push recovery     Balance control     Bipedal robot     Hip strategy    

Motion capability analysis of a quadruped robot as a parallel manipulator

Jingjun YU,Dengfeng LU,Zhongxiang ZHANG,Xu PEI

《机械工程前沿(英文)》 2014年 第9卷 第4期   页码 295-307 doi: 10.1007/s11465-014-0317-7

摘要:

This paper presents the forward and inverse displacement analysis of a quadruped robot MANA as a parallel manipulator in quadruple stance phase, which is used to obtain the workspace and control the motion of the body. The robot MANA designed on the basis of the structure of quadruped mammal is able to not only walk and turn in the uneven terrain, but also accomplish various manipulating tasks as a parallel manipulator in quadruple stance phase. The latter will be the focus of this paper, however. For this purpose, the leg kinematics is primarily analyzed, which lays the foundation on the gait planning in terms of locomotion and body kinematics analysis as a parallel manipulator. When all four feet of the robot contact on the ground, by assuming there is no slipping at the feet, each contacting point is treated as a passive spherical joint and the kinematic model of parallel manipulator is established. The method for choosing six non-redundant actuated joints for the parallel manipulator from all twelve optional joints is elaborated. The inverse and forward displacement analysis of the parallel manipulator is carried out using the method of coordinate transformation. Finally, based on the inverse and forward kinematic model, two issues on obtaining the reachable workspace of parallel manipulator and planning the motion of the body are implemented and verified by ADAMS simulation.

关键词: quadruped robot     actuated joints selection     kinematics analysis     motion planning     parallel manipulator    

一种应用于功率放大液压驱动外骨骼的基于物理人机交互估计的控制策略 None

Yi LONG, Zhi-jiang DU, Wei-dong WANG, Long HE, Xi-wang MAO, Wei DONG

《信息与电子工程前沿(英文)》 2018年 第19卷 第9期   页码 1076-1085 doi: 10.1631/FITEE.1601667

摘要: 提出一种能通过生物医学或机械传感器测量人机交互信号感知人体运动的用于助力的下肢外骨骼,并估计人体步态轨迹以快速准确地实施相应动作。提出安装在外骨骼上的力矩传感器直接获得物理人机交互(physical human-robot interaction,pHRI)力矩信息。采用卡尔曼平滑器消除噪声并平滑信号,定义了从pHRI力矩到人体步态轨迹的映射关系。通过外骨骼在运动期间的实时状态推导该映射,并通过基于地面反作用力的阈值方法识别人体运动相位。基于相位识别,通过所提算法估计人体步态,将步态辨识结果作为控制器的参考输入。用一种常规比例-积分-微分(proportional-integral-derivative,PID)控制策略控制外骨骼跟随人体步态运动。测试人员穿戴外骨骼以自然速度在水平面进行行走实验,实验结果验证了所提策略的有效性。

关键词: 外骨骼;物理人机交互;力矩传感器;人体步态;卡尔曼平滑器    

标题 作者 时间 类型 操作

Parasitic rotation evaluation and avoidance of 3-UPU parallel mechanism

Haibo QU, Yuefa FANG, Sheng GUO

期刊论文

Optimal design of a linkage–cam mechanism-based redundantly actuated parallel manipulator

期刊论文

A redundantly actuated PRPRP radial mechanism in the segment erector of a shield machine for synchronization

Wanghui BU, Zhenyu LIU, Jianrong TAN, Jin CHENG

期刊论文

Development of a redundant anthropomorphic hydraulically actuated manipulator with a roll–pitch–yaw spherical

期刊论文

Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning

Ruizhou WANG, Xianmin ZHANG

期刊论文

Piezoelectric film-actuated motion platform with high resolution

HUA Shunming, ZHANG Hongzhuang, CHENG Guangming, FAN Zunqiang, LIU Jianfang

期刊论文

Analysis of suitable geometrical parameters for designing a tendon-driven under-actuated mechanical finger

Francesco PENTA,Cesare ROSSI,Sergio SAVINO

期刊论文

A novel shape memory alloy actuated soft gripper imitated hand behavior

期刊论文

Structural design of morphing trailing edge actuated by SMA

Qi WANG, Zhiwei XU, Qian ZHU

期刊论文

Push recovery for the standing under-actuated bipedal robot using the hip strategy

Chao LI,Rong XIONG,Qiu-guo ZHU,Jun WU,Ya-liang WANG,Yi-ming HUANG

期刊论文

Motion capability analysis of a quadruped robot as a parallel manipulator

Jingjun YU,Dengfeng LU,Zhongxiang ZHANG,Xu PEI

期刊论文

一种应用于功率放大液压驱动外骨骼的基于物理人机交互估计的控制策略

Yi LONG, Zhi-jiang DU, Wei-dong WANG, Long HE, Xi-wang MAO, Wei DONG

期刊论文